37. Nitrogen-NMR Studies on the Protonation of 2-(Aminomethyl)pyridine and Tris[(2-pyridyl)methyl]amine

by Giorgio Anderegg*, Konstantin Popov¹), and Paul S. Pregosin*

Laboratorium für anorganische Chemie, ETH-Zcntrum, Universitätstrasse 6, CH-8092 Zürich

(12.XII.85)

 14 N- and 15 N-NMR spectra have been recorded for 2-(aminomethyl)pyridine (1), tris[(2-pyridyl)methyl]amine (2), and some of their protonated forms. For 1, the most basic site is the aliphatic N-atom, whereas for 2 the pyridine N-atoms are more basic, in contrast to what might be expected for a tertiary aliphatic amine.

Introduction. $^{-15}$ N-NMR (I = $\frac{1}{2}$, natural abundance = 0.36%) is now recognized as a valuable spectroscopic complement in nitrogen chemistry [1]. The constantly increasing 15 N-NMR data base [2] combined with theoretical calculations of 15 N chemical shifts [3] has helped to develop empirical correlations relating 15 N to molecular structure [1] [4].

In the course of earlier measurements [5] on the stability of polyfunctional amine ligands, an apparent inversion in the most basic site of the compounds 1 and 2 was noticed. Compound 1 is thought to be protonated initially at the aliphatic N-atom; whereas for 2, the pyridine N-atoms are the more basic centers, in contrast to what might be expected for a tertiary aliphatic amine. As there was no immediately obvious explanation for this inversion, we considered it useful to support the stability-constant measurements with nitrogen-NMR data. It is known that protonation of an sp² pyridine-type N-atom is accompanied by a relatively large upfield shift in the ¹⁵N position of *ca*. 100 ppm [6], whereas protonation of aliphatic amine N-atom gives a much smaller downfield shift of *ca*. 10 ppm [1] [7]. Moreover, the ¹⁵N spin-lattice relaxation time, T₁, and nuclear *Overhauser* characteristics of a protonated *vs*. a non-protonated N-atom are sufficiently different as to be of empirical value, with protonated N-atoms often showing large nuclear *Overhauser* enhancements and relatively short T₁'s. Consequently, ¹⁵N-NMR should be a sufficiently sensitive structural tool from several viewpoints.

Results and Discussion. – The natural abundance ¹⁵N{¹H}-NMR spectrum of **1** in aqueous solution shows the expected resonances for the sp² and sp³ N-atoms, at $\delta = 305.3$

¹) Present address: Institute of Physical and Colloidal Chemistry, Moskow Technological University for Food Industry, Moskow, USSR.

and 19.4, respectively. Addition of 1 equiv. of H⁺ shifts $\delta(^{15}N)$ for the sp² N-atom (henceforth N_A) slightly upfield to $\delta = 294$ and the amine N-atom (henceforth N_B) downfield to $\delta = 28.5$. The magnitude of the latter is consistent with protonation of this center. Addition of a second equiv. of H⁺ changes the δ value for protonated N_B only slightly (*ca*. 0.7 ppm), whereas N_A is now found at $\delta = 199.1$, a change of 106.2 ppm from its original position. Clearly, the sequence of protonation is N_B before N_A.

To further substantiate the ¹⁵N-NMR experiment, we have measured the ¹⁴N-NMR spectrum of the dication (¹⁴N has I = 1 with a natural abundance of > 99.6%). Although ¹⁴N signals are frequently difficult to detect, due to fast T_1 and T_2 relaxation and the consequent line broadness, quaternarization of an N-site is known [8] to be accompanied by a reduction of the line width. The experimental ¹⁴N-NMR spectrum confirms this expectation (see the *Fig.*) and both nitrogen signals are readily observable. The ¹⁴N- and ¹⁵N-NMR data are in good agreement.

Fig. ¹⁵N and ¹⁴N (above) resonance for $H_2(1)^{2^+}$. The Δv_{γ_4} values for the low- and high-field resonances are 110 and 134 Hz, respectively.

Compound 2 is very sparingly soluble in H₂O; however, it is sufficiently soluble in MeOH for an ¹⁵N-NMR measurement. In this solvent, we find N_A at $\delta = 295.3$, but observe no signal for N_B. We assume this is related to the unfavorably long T₁ for the N-atom and, indeed, in none of the subsequent experiments was its resonance observed. In one respect, this inability to locate the N_B absorption represents a loss of information; however, since this failure can only arise when N_B is *not* protonated, there is chemical significance in the negative result. Compound 2 is soluble in an aqueous solution containing 1 equiv. of H⁺, and reveals N_A at $\delta = 267.5$. This is a modest highfield shift which we interpret as an average arising from one proton exchanging rapidly over the three N_A sites. Addition of 2 further equiv. of H⁺ moves N_A to $\delta = 206.3$, in keeping with complete protonation of all three N-atoms. A saturated solution of 2 in 1M HNO₃ reveals N_A at $\delta = 202.1$, but again no N_B signal. It appears that the trication, arising from protonation

of the N_A sites, is scarcely basic. In the hope of detecting both signals from 2 in $IM HNO_3$, an ¹⁴N-NMR spectrum of the sample was measured²).

Once again, only the signal of the protonated pyridine N-atom is observed. The failure to observe N_B in the ¹⁴N-NMR spectrum cannot result from a long T₁, but rather from either a very short T₂(N_B), or chemical phenomena, *e.g.* exchange. To put these observations on N_B in perspective, we have chosen to study the ¹⁴N and ¹⁵N characteristics of the model compound (PhCH₂)₃N (3). The ¹⁵N-NMR spectrum of 3 in acetone shows a resonance at $\delta = 57.4^3$) (Et₃N appears at $\delta = 46.6$ in cyclohexane [2]). The attained S/N ratio suggests a relatively long T₁ for 3, and indeed, introduction of *ca*. 2×10^{-2} M Cr(acac)₃ as relaxation reagent produces a *ca*. six-fold gain in S/N. Interestingly, we were unable to find the ¹⁴N resonance of 3 so that it would seem that 3, like 2, has a short T₁(¹⁴N) but a relatively long T₁(¹⁵N).

[H ⁺]/[Compound]	1		2
	N _A	N _B	N _A
0	305.3	19.4	295.3 ^b)
I	294.0	28.5	267.5
2	199.1	29.2	
3			206.3, 202.1°)

Despite the experimental difficulties associated with 2 and its protonation, the existing data support the previous observation based on stability constant measurements and protonation constants, *i.e.* that the *tert*-amine N-atom of 2 is considerably less basic than its analog in 1 (see *Experimental*).

The reason for the reduced basicity of N_B in 2 is not completely clear. Possibly, the combined inductive effects of three (2-pyridyl)methyl groups lead to sufficient electron withdrawal such that the basicity of the aliphatic N-atom falls below that of the pyridine N-atoms. ¹H-NMR spectroscopy, where inductive effects are relatively important, shows that the CH₂ resonance of 2 at $\delta = 3.85$ is *ca*. 0.3 ppm to *low* field of that for 3 ($\delta = 3.55$). This observation does not prove the inductive-effect hypotheses, but is consistent with this idea. Protonation of the pyridine ring introduces yet another electron-withdrawing influence, with reference to N_B, so that subsequent protonation occurs at the pyridine centers. In any case, compound 2 represents an example of a compound with an aliphatic N-atom whose basicity does not conform to that anticipated for a simple tertiary alkylamine [9].

Experimental. Compound **2** was prepared according to [10]. Compounds **1** and **3** were purchased from *Fluka* and 70% HClO₄ was obtained from *Merck*. Protonated **1** was obtained by adding a suitable number of equiv. of 70% HClO₄. D₂O was then added such that the protonated species were present at *ca*. 2M concentration.

²) T_1 and T_2 for ¹⁴N are usually of the order of ms so that a long relaxation time can be excluded; however, this does not exclude the possibility that the signal(s) will be too broad due to very fast relaxation.

³) These values were measured relative to CH₃NO₂ and corrected to NH₃ using δ (NH₃) = δ (CH₃NO₂) + 380.2 [1].

Compound **2** was available as its triply protonated ClO₄ salt (0.6M) and this was treated with 2 or 3 equiv. of KOH (1M) before addition of D_2O . The concentration of these solns. was *ca*. 0.06M.

 $^{15}N{^1H}$ -NMR spectra were measured in natural abundance, with NOE suppression, using a *Bruker WM-250* instrument operating at 25.3 MHz. Chemical shifts are reported relative to external NH₃. The spectra of the derivatives of 1 were measured using a 30 s delay. ^{15}N chemical shifts are considered to be correct to 0.1 ppm.

The p K_a values of the monoprotonated species of 1, 2, and 3 are 8.79 [5b], 6.17 [5a] and 5.40, respectively, the latter determined at 25° in glacial AcOH [11].

REFERENCES

- G. C. Levy, R. L. Lichter, 'Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy', John Wiley & Sons, New York, 1979.
- [2] M. Witanoski, L. Stefaniak, G.A. Webb, in 'Ann. Rep. NMR Spectrosc.', Ed. G.A. Webb, Academic Press, London, 1981, Vol. 11B.
- [3] M. Brémond, G.J. Martin, G.A. Webb, D.J. Reynolds, Org. Magn. Res. 1984, 22, 640; L. Stefaniak, J.D. Roberts, M. Witanoski, G.A. Webb, *ibid.* 1984, 22, 201; *ibid.* 1984, 22, 209.
- [4] T. Axenrod, P.S. Pregosin, G. W. A. Milne, *Tetrahedron Lett.* 1968, 5293; T. Axenrod, P.S. Pregosin, M.J. Wieder, E. D. Becker, R. B. Bradley, G. W. A. Milne, *J. Am. Chem. Soc.* 1971, 93, 6536; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Chem. Commun.* 1971, 1602; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Chem. Commun.* 1971, 1602; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Chem. Commun.* 1971, 1602; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Chem. Commun.* 1971, 1602; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Chem. Commun.* 1971, 1602; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Chem. Commun.* 1971, 1602; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Chem. Commun.* 1971, 1602; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Chem. Commun.* 1971, 1602; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Chem. Commun.* 1971, 1602; P.S. Pregosin, E. W. Randall, A. I. White, *J. Chem. Soc., Perkin Trans.* 2 1972, 1; H. van der Pod, G. van Koten, D. M. Grove, P. S. Pregosin, K. A. Ostoja Starzewski, *Helv. Chim. Acta* 1981, 64, 1174; H. Motschi, P.S. Pregosin, L. M. Venanzi, *ibid.* 1979, 62, 667.
- [5] G. Anderegg, E. Hubmann, N. G. Podder, F. Wenk, *Helv. Chim. Acta* 1977, 60, 124; G. Anderegg, *ibid.* 1971, 54, 509.
- [6] G. C. Levy, C. E. Holloway, R. C. Rosanske, J. M. Hewitt, C. H. Bradley, Org. Magn. Res. 1976, 8, 643.
- [7] V. N. Solkan, V. F. Bystrov, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1975, 23, 95.
- [8] J. P. Kintzinger, J. M. Lehn, Helv. Chim. Acta 1975, 58, 905.
- [9] D. D. Perrin, B. Dempsey, E. P. Serjeant, 'pK_A Prediction for Organic Acids and Bases', Chapman and Hall, London, 1981.
- [10] G.G. Anderegg, F. Wenk, Helv. Chim. Acta 1967, 50, 2330.
- [11] S. Bruckenstein, I. M. Kolthoff, J. Am. Chem. Soc. 1956, 78, 2974.